175 research outputs found

    Feasibility of an Outpatient Training Program after COVID-19

    Get PDF
    Long-term physical consequences of coronavirus disease 2019 (COVID-19) are currently being reported. As a result, the focus is turning towards interventions that support recovery after hospitalization. To date, the feasibility of an outpatient program for people recovering from COVID-19 has not been investigated. This study presents data for a physiotherapy-led, comprehensive outpatient pulmonary rehabilitation (PR) program. Patients were recruited after hospital discharge. Training consisted of twice weekly, interval-based aerobic cycle endurance (ACE) training, followed by resistance training (RT); 60–90 min per session at intensities of 50% peak work rate; education and physical activity coaching were also provided. Feasibility outcomes included: recruitment and dropout rates, number of training sessions undertaken, and tolerability for dose and training mode. Of the 65 patients discharged home during the study period, 12 were successfully enrolled onto the program. Three dropouts (25%) were reported after 11–19 sessions. Tolerability of interval-based training was 83% and 100% for exercise duration of ACE and RT, respectively; 92% for training intensity, 83% progressive increase of intensity, and 83% mode in ACE. We tentatively suggest from these preliminary findings that the PR protocol used may be both feasible, and confer benefits to a small subgroup of patients recovering from COVID-19

    In situ remediation of contaminated marinesediment: an overview

    Get PDF
    Sediment tends to accumulate inorganic and persistent hydrophobic organic contaminants representing one of the main sinks and sources of pollution. Generally, contaminated sediment poses medium- and long-term risks to humans and ecosystem health; dredging activities or natural resuspension phenomena (i.e., strongly adverse weather conditions) can remobilize pollution releasing it into the water column. Thus, ex situ traditional remediation activities (i.e., dredging) can be hazardous compared to in situ techniques that try to keep to a minimum sediment mobilization, unless dredging is compulsory to reach a desired bathymetric level. We reviewed in situ physico-chemical (i.e., active mixing and thin capping, solidification/stabilization, chemical oxidation, dechlorination, electrokinetic separation, and sediment flushing) and bio-assisted treatments, including hybrid solutions (i.e., nanocomposite reactive capping, bioreactive capping, microbial electrochemical technologies). We found that significant gaps still remain into the knowledge about the application of in situ contaminated sediment remediation techniques from the technical and the practical viewpoint. Only activated carbon-based technologies are well developed and currently applied with several available case studies. The environmental implication of in situ remediation technologies was only shortly investigated on a long-term basis after its application, so it is not clear how they can really perform

    One year follow-up of physical performance and quality of life in patients surviving COVID-19: a prospective cohort study

    Get PDF
    INTRODUCTION: The coronavirus disease (COVID-19) continues to affect many countries globally, with the long-term impact of the disease now being recognized. According to the latest research, some of the affected individuals continue to experience functional limitations, reduced physical performance and impaired health-related quality of life (HRQoL) even after eight months. This prospective cohort study aimed to describe the longer-term recovery of physical performance and HRQoL in COVID-19 survivors over one year. METHOD: A cohort (n = 43; 32-84 years old) hospitalized with COVID-19 between March and June 2020 was followed over one year and assessed at three time points: hospital discharge, 3 months and 12 months post-admission. Participants experienced mild (10/43) to critical (6/43) pneumonia and stayed in the hospital for a median of 10 days (IQR 9). Participants were assessed for physical performance (six-minute walk test), HRQoL (EQ-5D-5L), COVID-19 related limitations in functionality (PCFS), hospital-related anxiety and depression (HADS-A/-D), lung function (FEV1, FVC) and dyspnea during activity (mMRC). All assessments were conducted by physiotherapists trained in cardio-respiratory rehabilitation. RESULTS: After discharge, 8/34 showed reduced physical performance, 9/42 had lower HRQoL and 14/32 had COVID-19 induced limitations in functionality on the PCFS scale. Physical performance did not change significantly between discharge and 12-month follow-up, but 15/34 participants showed clinically relevant improvements in walking distance (>30 m). However, 16/34 had a decreased walking distance >30 m when comparing 3-month to 12-month follow-up. At 12 months, 12/41 of participants still perceived COVID-19 related limitations in daily life on the PCFS scale. For HRQoL, 12/41 participants still perceived moderate-to-severe symptoms of pain and discomfort and 13/41 slight-to-severe symptoms of anxiety and depression. CONCLUSION: This cohort of adult patients hospitalized for mild to severe COVID-19 in Switzerland was generally mildly affected but still reported some limitations after one year. These results offer preliminary indications for ongoing support after hospitalization and point towards the need for specific, individualized follow-up to support their recovery. ClinicalTrials.gov (NCT04375709

    A novel substitution 1381V in the sterol 14alpha-demethylase (CYP51) of Mycosphaerella graminicola is differentially selected by azole fungicides

    Get PDF
    The recent reduction in the efficacy of azole fungicides in controlling Septoria leaf blotch of wheat, caused by Mycosphaerella graminicola, has prompted concerns over possible development of resistance, particularly in light of the recent emergence of widespread resistance to quinone outside inhibitors (QoIs). We have recently implicated alterations in the target-encoding sterol 14 alpha-demethylase protein (CYP51), and over-expression of genes encoding efflux pumps, in reducing sensitivity to the azole class of sterol demethylation inhibitors (DMIs) in M. graminicola. Here we report on the prevalence and selection of two CYP51 alterations, substitution I381V and deletion of codons 459 and 460 (Delta Y459/G460), in populations of M. graminicola. Neither alteration has previously been identified in human or plant pathogenic fungi resistant to azoles. The presence of Delta Y459/G460 showed a continuous distribution of EC50 values across isolates with either I381 or V381, and had no measurable effect on azole sensitivity. Data linking fungicide sensitivity with the presence of I381V in M. graminicola show for the first time that a particular CYP51 alteration is differentially selected by different azoles in field populations of a plant pathogen. Substitution I381V although not an absolute requirement for reduced azole sensitivity, is selected by tebuconazole and difenoconazole treatment, suggesting an adaptive advantage in the presence of these two compounds. Prochloraz treatments appeared to select negatively for I381V, whereas other azole treatments did not or only weakly impacted on the prevalence of this substitution. These findings suggest treatments with different members of the azole class of fungicides could offer a resistance management strategy

    The one health problem of azole resistance in Aspergillus fumigatus: current insights and future research agenda

    Get PDF
    Azole resistance is a concern for the management of diseases caused by Aspergillus fumigatus in humans. Azole fungicide use in the environment has been identified as a possible cause for development of resistance, which increases the complexity and number of stakeholders involved in this emerging problem. A workshop was held in Amsterdam early 2019 in which stakeholders, including medical and agricultural researchers, representatives from the government, public health, fungicide producers and end-users, reviewed the current evidence supporting environmental selection for resistance and to discuss which research and measures are needed to retain the effectiveness of the azole class for environmental and medical applications. This paper provides an overview of the latest insights and understanding of azole resistance development in the clinical setting and the wider environment. A One Health problem approach was undertaken to list and prioritize which research will be needed to provide missing evidence and to enable preventive intervention

    Calibration of TCCON column-averaged CO₂: the first aircraft campaign over European TCCON sites

    Get PDF
    The Total Carbon Column Observing Network (TCCON) is a ground-based network of Fourier Transform Spectrometer (FTS) sites around the globe, where the column abundances of CO₂, CH₄, N₂O, CO and O₂ are measured. CO₂ is constrained with a precision better than 0.25% (1-σ). To achieve a similarly high accuracy, calibration to World Meteorological Organization (WMO) standards is required. This paper introduces the first aircraft calibration campaign of five European TCCON sites and a mobile FTS instrument. A series of WMO standards in-situ profiles were obtained over European TCCON sites via aircraft and compared with retrievals of CO₂ column amounts from the TCCON instruments. The results of the campaign show that the FTS measurements are consistently biased 1.1% ± 0.2% low with respect to WMO standards, in agreement with previous TCCON calibration campaigns. The standard a priori profile for the TCCON FTS retrievals is shown to not add a bias. The same calibration factor is generated using aircraft profiles as a priori and with the TCCON standard a priori. With a calibration to WMO standards, the highly precise TCCON CO₂ measurements of total column concentrations provide a suitable database for the calibration and validation of nadir-viewing satellites

    The Improvement of Durability of Reinforced Concretes for Sustainable Structures: A Review on Different Approaches

    Get PDF
    The topic of sustainability of reinforced concrete structures is strictly related with their durability in aggressive environments. In particular, at equal environmental impact, the higher the durability of construction materials, the higher the sustainability. The present review deals with the possible strategies aimed at producing sustainable and durable reinforced concrete structures in different environments. It focuses on the design methodologies as well as the use of unconventional corrosion-resistant reinforcements, alternative binders to Portland cement, and innovative or traditional solutions for reinforced concrete protection and prevention against rebars corrosion such as corrosion inhibitors, coatings, self-healing techniques, and waterproofing aggregates. Analysis of the scientific literature highlights that there is no preferential way for the production of “green” concrete but that the sustainability of the building materials can only be achieved by implementing simulta-neous multiple strategies aimed at reducing environmental impact and improving both durability and performances
    • 

    corecore